Rigaku- TTRX3 操作手册 2020/5/5 修时

一、開機

1. 確定冷氣運作正常室內溫度必須控制在 22~25℃。

2. 確定儀器真空度已經達到可以開啟 X 光高壓的程度,請檢查 VACUUM 中 OPERATE 燈號是否長亮(不能閃爍,否則代表 TURBO PUMP 有在運轉但真空不足,另外請利用 CHRSOR 鍵選到 IG_CHK 後按 ENTER 檢查 IG 必須在規定值以下(注意機台上公告)才可以開啟 X 光高壓。

3. 如果 PUMP 以及 OPERATE 的燈號都不亮,代表曾經跳電,請依程序復機到 OPERATE 燈號長亮,且 IG 在規定值以下才可操作。

复機程序

a. 關閉機台後面上方 RCD 電源及下方 XG 電源

b.進入隔間內,在冰水機旁邊是本儀器的穩壓器,當停電時穩壓器會跳脫,最下方會出現紅燈,此時請同時按上方兩個綠色按鈕即可恢復供電,燈號會從紅燈跳為綠燈。(如果所有燈號都不亮, 代表 X 光機後方電盤箱內的 breaker 已跳脫,請先開啟 breaker,此現象少見,請告知技術員)

C. 確定室內溫度夠低,冰水機是關閉的,否則先關閉冰水機(包括冷卻水塔開關)。

d. 開啟機台後面下方 XG 電源及上方 RCD 電源(請注意順序)。

e. 警報音若不停按機台前方面板上之 ALARM RESEET 鍵後再按 START 抽真空。

f. 檢查 IG 值。直到 OPERATE 燈號長亮, IG 在規定值以下才可繼續操作。

g. 在按 START 鍵後如果真空度太差, PUMP 會跳機,此時請重複執行 e→f 步驟直到 OK

4. 打開 X 光機主機機台後方『冰水機』冷卻水塔開闢,將兩個開闢都往上扳。

- 5. 進入隔間內將『冰水機』紅色開闢從水平轉到垂直,檢查水位必須高於紅色標線,並等到壓縮機 啟動(cool 指示燈亮)且水溫會下降至 22℃以下才能確定『冰水機』正常,可以啟動 X 光機。
- 6. 確定『TTRX3』機台後之 RCD(與電腦主機連線用)開闢已打開。
- 7. 確定 Rigaku Server 連線正常 (畫面下方圖示為藍色)

若是 Server 顯示藍燈,但是有些功能無法執行或操作過程出現錯誤訊息,無法控制機台,代表連 線錯誤,請直接依下列終極方式執行重行連線動作 a. 關閉機台後方 RCD 開闢 b. 關閉電腦 c 開啟 RCD 開關 d. 重新啟動電腦,注意順序不能變。

8. 執行 XG Operation 程式,按電源開闢,等指示燈由紅燈變為綠燈後代表門已關好,安全裝置啟動後,開啟 X 光高壓開關按鈕將 X-RAY 光源打開,此時電壓電流會達到初始值 20kV,10mA。

9. 點選 XG Property 將 Aging data 模式選為 every day use,後執行 Aging,等到 Aging 執行完畢 (Aging 按鈕再度變成灰色),此時電壓電流會達到目標值才可開始分析。

XG Operation RINT250 Target :	XG Property				×
File View Option Help	XG setting Aging data Wavelength table	e]			
	Post-aging XB condition	Aging data	· ~ 、		
-X-ray control	The present condition	Every day use	• /	New	Delete
🖌 🚫 🚺 🐏 🚍			InA T	ime (sec) 🔺	
	Aging information	1 20	10	300	
- k) (má control	kV minimum step : 1 kV	2 20	50	120	
	mA minimum atom : 1 mA	3 20	100	180	
	ng minimum step. I ng	4 30	100	300	
set Tube cur.: 10 ♣ mA	kV setting range : 20 - 60 kV	5 30	200	300	
Min. value	mA setting range : 10 - 300 mA	6 40	100	300	
Load: 0.20 kW	Maximum kW : 18.00 kW	7 40	200	300	
		8 40	300	300	
		9 50	100	300	
		10 50	200	300 👻	
			<u> </u>		Cancel

10. 執行 Rigaku control panel 程式中的 RINT 2500 Right system 以確定機器硬體裝備。

以下為使用平行光、thin film 載台的設定值,須依實際狀況變更。

📲 RINT2500 Right system Property of 🛛 🔋 🚺	RINT2500 Right system Property of	2 🛛
System construction X-ray Beam Type Geometry System	System construction X-ray Beam Type Geometry System	
System Name : RINT2500 Right system	System Name : RINT2500 Right system	
Gonioneter TTRAX3 In-plane(auto Ts) Attachment Attachment Attachment Attachment Attachment Attachment Ber K-beta filter Detector Scinitilation counter Property Temperature controller Not installed Property	Focus selection C Line Point Wavelength selection C K alpha 1 C K alpha 2 C K beta C K alpha	
OK Cancel	ОК	Cancel

CBO 是將聚焦光變成平行光的一種光學系統,我們有裝。

ystem construction X-ra	y Bear	n Type Geometry Sys	tem]			
		System Nan	ne :	RINT2500 Right s	ystem		
Geometry Information							
C Focusing Method	С	Parallel Beam Method	ſ	Thin film(general)			
C Small Angle	С	Micro Area	С	Thin film(highly resolution)			

選用不同光學系統、載台與偵測器後,三者之間必須經過校正得到一參考零點,在 Geometry System 中存有六組參考零點的數據,相對應於不同的光學系統與載台的搭配,如果選平行光、Thin film 載台、此校正參數存放在 Thin film 那個選項,所以要在此選 Thin film。

10. 試片準備:表面必須平整,必要時利用黏土與載玻片輔助,粉末試樣請放進試片座,並且鋪平, 放進機器前必須按 DOOR,聽到警報聲響,解除安全開關後才能打開機台的門,試片放置於十字線 中間,放置完試片後請輕輕將門關閉,勿大力碰撞以免跳機。

11. 開始分析點選桌面上的 【 ThinFilm Measurement 】, 然後依據需求選取分析程式。例如一般 繞射可選 Profile 或 Profile/I

按下 Browse…選取存檔路徑及檔名.

Sample Name: 輸入這個樣品的名稱及註解.

Condition: 使用的掃描條件

Init position: 勾起來 (掃描完成後會回到啓始角度)

XG ending after: 選用 Present condition (掃描完成後, 維持現狀的電壓電流值)

12. 按下上圖【Condition Editor 】,設定量測條件,各個實驗的條件設法可以依照 18kW XRD <u>各種實驗條件設定簡介</u>說明設定(檔案可至 <u>http://homepage.ntu.edu.tw/~kcyuan</u> 下載)。

Edit	Help										
	Ę				P =						
1 N	o.2 No.3	No.4 No.5	5 No.6 No	7 No.8 N	lo.9 No.10 I	No.11 No	.12				
Op	erator 18kW	XRD	Mer	no						_	
	Unit cps	-	Default sca	ile 1000	cps	🔽 A	uto scale				
Delete	e previous sett	ing results	🔽 Set 'C	Imega = Two-Tl	heta/2"						
Spe	cimen Alignme	nt —				Prec	ise Alignma	ent			
S	ican Sequenc	e Omega->Z	•	ATT 1/5000) 🔻		can Seque	nce Rx,Ry -> Z	(Coarse 👻	ATT 1/50	00 👻
	Repea	at 2	▼ Cycles	DS 0.20m	n 👻		Re	peat 1	✓ Cycles	DS 3.00r	nm 👻
	Threshol	d 1000	▼ cps	SS 0.2mm	-		Thres	hold 1000	✓ cps	SS 0.2m	m 💌
Peak !	Search Metho	d Peak-top	-	RS 0.2mm	-	Peak	Search Me	thod Peak-top	-	RS 0.2m	m 👻
	– Scar	condition setti	ng			Two	-Theta/Om	ega 0.0210	deg.		
	Spe	cimen Thickne	ss 4.90	mm Se		Axis	-Delta (Start)	+Delta (End)	Sampling Step	Speed [mm/min.]	Delta(Back) [mm]
Axis	Start [mm]	End [mm]	Sampling Step [mm]	Speed [mm/min.]	Delta(Back) [mm]	Z	[mm] -1.700	[mm] 0.300	[mm] 0.010	4.000	0.500
Ζ	-5.900	-3.900	0.010	4.000	0.500	omega	-0.5000	10.5000		2.0000	0.5000
nega	-0.5400	0.5400	0.0100	4.0000	0.5000	Hx,Hy	-1.500	11.500	0.010	4.000	10.500
Profi	ile Measureme	nt —									
	Scan axis	2Theta/Omega	👻 Scanin	nethod Continu	Jous 🔻	Range	Setting A	bsolute	-		
Exec.	Start [deg.]	End [deg.]	Sampling Step	Speed [deg./min_1	ATT	DS FI		SS	RS	Connect All Origin	Ranges
1	20.0000	80.0000	0.0500	4.0000	Open	• 0.50mm	- 0.2	mm 🔻 0.2m	nn 🔻	2theta 0.00	der 00
Г	0.0000	3.0000	0.0040	0.5000	1/5000	3.00mm	- 0.2	mm 🔽 0.2m	nn 🔽	omega 0.50	nn der
F	26.0000	39.0000	0.0200	5.0000	Open	0.50mm	- 0.5	mm 🔽 0.5m	m 🔻 🤈	ThetaChi 0.00	deg dec
					and the second			CONTRACTOR AND CONTRACTOR	222	11010001 0.00	Y UCL
Г	39,0000	51.0000	0.0200	1.0000	Open	0.50mm	• 0.5	mm 💌 0.5m	nm 💌	obi 0.00	0 dec

注意:校正設定部分的 Peak Search method 中有 peak-top 及 FWHM 兩種, 樣品表面平整且樣品大於所選的 Divergent height limit slit 選 peak-top 樣品表面粗糙或樣品小於所選的 Divergent height limit slit 選 FWHM 選 FWHM,代表在做 omega 校正時會有大範圍的平坦區沒有最高值,因此 Start 及 End 都要放大, 才能涵蓋此校正曲線取得正確地校正值,而 Deta(Back)是指第二次校正時所取的正負範圍,所以 也要取 1.5, 第二次 omega 校正才能從-1.5 掃到 1.5。

13. 按下上圖 【Execute Measurement 】,開始量測,開機第一次掃描會自動做角度校正,及確 認 Slit 是否放對,請按下 OK

😢 Right (Console	\times	😢 Right	Console	\times	(P) Right (Console	\times
0	Now initializing]	9	Please change to 10.00mm !!]	**	- Measurement	
	Pause			Ok			Pause Break	

1. 按 X 光高壓開關按鈕 X 光機的電壓電流會慢慢降到 20kV/10mA 後,高壓會自動切掉,燈號會從 黃色變為太色。

XG Operation RNT2200 Target :	Cu 🔀
File View Option Help	
-X-ray control	Shutter ctrl
🈹 🚺 🏗 🛒	
kV,mA control	
Tube 20 🔶 🖊 KV	40
) 50
Set lubecur.: 2 🔽 mA	20
Min. value) 60
Lpad: 0.04 kW	0.80
) 2.00
	1/16/2008 3:29 PM

2. 關閉主機此時 Aging 變為黃色,開始冷卻 X 光管,此時可先刷卡將螢幕關閉,不再計費。 3. 等儀器面板顯示 POWER OFF NOW 代表冷卻完畢。

Sector N	Terrana and a second and a seco		900)	
	POUER OFF HOM SHUT FORTS 1.40 IN IN IN IN	X-Ray TER 10	Contraction of the second seco	SAFETY RELACE

3.進入隔間內將『冰水機』關閉,紅色開關從垂直轉到水平。
 4. 關閉X光機主機機台後方『冰水機』冷卻水塔開關,將兩個開闢都往下扳。
 5. 關電燈、關門。(冷氣不關)

三、注意事項

再次重申,實驗過程中請每10~20分鐘檢查一次冰水機水溫。

- 若溫度超過27度請立即通知技術員。
- 若溫度超過30度,冰水機跳機,會發出尖銳聲,顯示Error,請立即關閉X光機電
 壓電流,再通知技術員。